

SAFETY DATA SHEET

Following Regulation 1910.1200

SDS Number: RP402 Date of first issue: 17 April 2013 Date of last revision: 21 February 2022

1 - Identification of product

a - Product identifier used on the label

Tradenames: Emitter Board

b - Other means of identification

REFRACTORY CERAMIC FIBER PRODUCT

c - Recommended use of the chemical and restrictions on use

d - Name, address, and telephone number

Mc	organ Advanced Materials	Morgan Advanced Materials
		P. O. Box 923; Dept. 300
Bu	rlington, Ontario L7M 1L1	Augusta, GA 30903-0923
CA	NADA	USA
Tel	ephone: 905-335-3414	Telephone: 706-796-4200

e - Emergency Phone Number

For Product Stewardship and Emergency Information:

Hotline - 1-800-722-5681 Fax - 706-560-4054

For additional SDSs and to confirm this is the most current SDS for the product, visit our web page www.morganthermalceramics.com or send a request to MT.NorthAmerica@morganplc.com

2 - Hazard Identification

a - Classification of the chemical in accordance with paragraph (d) of §1910.1200

The U.S. Occupational Safety and Health Administration (OSHA) Hazard Communication Standard (HCS) 2012 indicates that IARC Group 2B corresponds to OSHA HCS 2012 Category 2 carcinogen classification (see, e.g., §1910.1200, Appendix F, Part D).

b - Signal word, hazard statement(s), symbol(s) and precautionary statement(s) in accordance with paragraph (f) of §1910.1200

Under OSHA HCS 2012, RCF is classified as GHS category 2 carcinogen.

Hazard Pictograms

Signal Words

Warning

Hazard Statements

Suspected of causing cancer by inhalation.

Precautionary Statements

Do not handle until all safety instructions have been read and understood. Use respiratory protection as required; see section 8 of the Safety Data Sheet. If concerned about exposure, get medical advice. Store in a manner to minimize airborne dust. Dispose of waste in accordance with local, state and federal regulations.

Supplementary Information

May cause temporary mechanical irritation to exposed eyes, skin or respiratory tract. Minimize exposure to airborne dust.

Emergency Overview

c - Describe any hazards not otherwise classified that have been identified during the classification process

Mild mechanical irritation to skin, eyes and upper respiratory system may result from exposure. These effects are usually temporary.

d - Mixture Rule

Not applicable.

3 - Composition / Information On Ingredients

a - Composition table

COMPONENTS	CAS NUMBER	% BY WEIGHT
Refractories, Fibers, Aluminosilicate	142844-00-6	30 - 35
Silicon Carbide	409-21-2	30 - 35
Alkaline-Earth Silicate Wool*	436083-99-7	15 - 20
Silica, Amorphous	7631-86-9	5 - 10
Starch	9005-25-8	3 - 5

* CAS definition: Alkaline Earth Silicate (AES) consisting of silica (50-82 wt %), calcia and magnesia (18- 43 wt %), alumina, titania and zirconia (less than 6 wt %), and trace oxides. This CAS composition also covers Morgan Thermal Ceramics products Calcium-Magnesium-Silicate Wool (CAS no. 329211-92-9) and Calcium-Magnesium-Zirconium-Silicate Wool (CAS no. 308084-09-5).

b - Common Name

(See Section 8 "Exposure Controls / Personal Protection" for exposure guidelines)

d - Impurities and Stabilizing Additives

Not applicable.

4 - First-Aid measures

a - Description of necessary measures, subdivided according to the different routes of exposure, i.e., inhalation, skin and eye contact, and ingestion

Eves

If eyes become irritated, flush immediately with large amounts of lukewarm water for at least 15 minutes. Eyelids should be held away from the eyeball to ensure thorough rinsing. Do not rub eyes.

Skin

If skin becomes irritated, remove soiled clothing. Do not rub or scratch exposed skin. Wash area of contact thoroughly with soap and water. Using a skin cream or lotion after washing may be helpful.

Respiratory Tract

If respiratory tract irritation develops, move the person to a dust free location. See Section 8 for additional measures to reduce or eliminate exposure.

Gaetrointeetinal

If gastrointestinal tract irritation develops, move the person to a dust free environment.

c - Indication of immediate medical attention and special treatment needed, if necessary

5 - Fire-fighting measures

a - Suitable (and unsuitable) extinguishing media and

Use extinguishing media suitable for type of surrounding fire

c - Special Protective Equipment and Precautions for Firefighters

NFPA Codes: Flammability: 0 Health: 1 Reactivity: 0 Special: 0

b - Specific hazards arising from the chemical (e.g., nature of any hazardous combustion products):

None

6 - Accidental Release Measures

a - Personal precautions, protective equipment, and emergency procedures

Minimize airborne dust. Compressed air or dry sweeping should not be used for cleaning. See Section 8 "Exposure Controls / Personal Protection" for exposure guidelines.

b - Methods and materials for containment and cleaning up

Frequently clean the work area with vacuum or wet sweeping to minimize the accumulation of debris. Do not use compressed air for clean-up.

7 - Handling and storage

a - Precautions for safe handling

Handle fiber carefully to minimize airborne dust. Limit use of power tools unless in conjunction with local exhaust ventilation. Use hand tools whenever possible.

b - Conditions for safe storage, including any incompatibilities

Store in a manner to minimize airborne dust.

c - empty containers

Product packaging may contain residue. Do not reuse.

8 - Risk Management Measures / Exposures Controls / Personal Protection

a - OSHA permissible exposure limit (PEL), American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV), and any other exposure limit used or recommended by the chemical manufacturer, importer, or employer preparing the safety data sheet, where available

EXPOSURE GUIDELINES							
MAJOR COMPONENT	OSHA PEL	0.2 f/cc, 8-hr. TWA	MANUFACTURER'S REG				
Refractories, Fibers, Aluminosilicate	None Established*	1	0.5 f/cc, 8-hr. TWA**				
Alkaline-Earth Silicate Wool	None Established	10 mg/m ³	1 f/cc				
Starch	15 mg/m ³ (total dust); 5 mg/m ³ (respirable dust)	None Established	NONE				
Silica, Amorphous	$(80 \text{ mg/m}^3 \div \% \text{ SiO}_2) \text{ or}$ 20 mppcf	None Established	NONE				
Silicon Carbide	15 mg/m ³ (total dust); 5 mg/m ³ (respirable dust)	0.2 f/cc, 8-hr. TWA					

*Except of in the state of California, there is no specific regulatory standard for RCF in the U.S. OSHA's "Particulate Not Otherwise Regulated (PNOR)" standard [29 CFR 1910.1000, Subpart Z, Air Contaminants] applies generally - Total Dust 15 mg/m³; Respirable Fraction 5 mg/m³. The PEL for RCF in California is 0.2 f/cc, 8-hr TWA

** HTIW Coalition has sponsored comprehensive toxicology and epidemiology studies to identify potential RCF-related health effects [see Section 11 for more details], consulted experts familiar with fiber and particle science, conducted a thorough review of the RCF-related scientific literature, and further evaluated the data in a state-of-the-art quantitative risk assessment. Based on these efforts and in the absence of an OSHA PEL, HTIW Coalition has adopted a recommended exposure guideline (REG), as measured under NIOSH Method 7400 B. The manufacturers' REG is intended to promote occupational health and safety through feasible exposure controls and reductions as determined by extensive industrial hygiene monitoring efforts undertaken voluntarily and pursuant to an agreement with the U.S. Environmental Protection Agency.

OTHER OCCUPATIONAL EXPOSURE LEVELS (OEL)

Ontario Canada OEL: Silicon Carbide (fibrous) including whiskers = 0.1 f/cc; RCF = 0.5 f/cc. RCF-related occupational exposure limits vary internationally. Regulatory OEL examples include: Canada – 0.2 to 1.0 f/cc; Ontario Canada OEL = 0.5 f/cc; United Kingdom – 1.0 f/cc. Non-regulatory OEL examples include: HTIW Coalition REG – 0.5 f/cc. The objectives and criteria underlying each of these OEL decisions also vary. The evaluation of occupational exposure limits and their relative applicability to the workplace is best performed, on a case-by-case basis, by a qualified Industrial Hygienist.

b - Appropriate Engineering Controls

Use engineering controls such as local exhaust ventilation, point of generation dust collection, down draft work stations, emission controlling tool designs and materials handling equipment designed to minimize airborne fiber emissions.

c - Individual protection measures, such as personal protective equipment

PPF - Skin

Wear personal protective equipment (e.g gloves), as necessary to prevent skin irritation. Washable or disposable clothing may be used. If possible, do not take unwashed clothing home. If soiled work clothing must be taken home, employees should be informed on best practices to minimize non-work dust exposure (e.g., vacuum clothes before leaving the work area, wash work clothing separately, and rinse washer before washing other household clothes.

PPE - Ey

As necessary, wear goggles or safety glasses with side shields.

PPE - Respiratory

When engineering and/or administrative controls are insufficient to maintain workplace concentrations below the 0.5 f/cc REG or a regulatory OEL, the use of appropriate respiratory protection, pursuant to the requirements of OSHA Standards 29 CFR 1910.134 and 29 CFR 1926.103, is recommended. A NIOSH certified respirator with a filter efficiency of at least 95% should be used. The 95% filter efficiency recommendation is based on NIOSH respirator selection logic sequence for exposure to manmade mineral fibers. Pursuant to NIOSH recommendations, N-95 respirators are appropriate for exposures up to 10 times the NIOSH Recommended Exposure Limit (REL). With respect to RCF, both the NIOSH REL and the industry REG have been set at 0.5 fibers per cubic centimeter of air (f/cm³). Accordingly, N-95 would provide the necessary protection for exposures up to 5 f/cm³. Further, the Respirator Selection Guide published by 3M Corporation, the primary respirator manufacturer, specifically recommends use of N-95 respirators for RCF exposures. In cases where exposures are known to be above 5.0 f/cm³, 8 hour TWA, a filter efficiency of 100% should be used. Other factors to consider are the NIOSH filter series N, R or P - (N) Not resistant to oil, (R) Resistant to oil and (P) oil Proof. These recommendations are not designed to limit informed choices, provided that respiratory protection decisions comply with 29 CFR 1910.134.

The evaluation of workplace hazards and the identification of appropriate respiratory protection is best performed, on a case by case basis, by a qualified Industrial Hygienist.

Other Information

Concentrations based upon an eight-hour time weighted average (TWA) as determined by air samples collected and analyzed pursuant to NIOSH method 7400 (B) for airborne fibers. The manufacturer recommends the use of a full-facepiece air purifying respirator equipped with an appropriate particulate filter cartridge during furnace tear-out events and the removal of used RCF to control exposures to airborne fiber and the potential presence of crystalline silica.

9 - Physical and chemical properties

a - Appearance Dark Grey fibrous board, no odour

b -Odor Not applicable c - Odor Threshold Not applicable

Not applicable d - Melting Point 1760°C (3200°F) f- Initial Boiling Point/Range Not applicable g- Flashpoint Not applicable h - Evaporation Rate Not applicable i - Flammability Not applicable j - Upper/Lower Flammability or Explosive Limits Not applicable

k - VAPOR PRESSURE Not applicable I - VAPOR DENSITY Not applicable Not soluble in water m - Solubility

n - Relative Density 0.35

o - Partition Coefficient: n-Octanol/water Not applicable p - Auto-ignition temperature Not applicable q - Decomposition Temperature Not applicable Not applicable r - Viscosity

10 - Stability and Reactivity

a - Reactivity

e- pH

Stable under conditions of normal use.

b - Chemical Stability

This is a stable material.

c - Possibility of Hazardous Reaction

Not applicable.

d - Conditions to Avoid

Please refer to handling and storage advise in Section 7.

e - Incompatible Materials

None.

f - Hazardous decomposition products

Oxides of carbon and trace of ammonia may be released from starch during initial heating of this product. Starch is an organic hydrocarbon and as such will emit water vapor, oxides of carbon (e.g., carbon dioxide, carbon monoxide, etc.) and traces of ammonia when heated. The fumes may cause discomfort and irritation to some people if released into an unventilated area. Initial use of this products shall be in area with sufficient ventilation or air movement.

11 - Toxicological information

a - TOXICOKINETICS, METABOLISM AND DISTRIBUTION

Exposure is predominantly by inhalation or ingestion. Man-made vitreous fibers of a similar size to RCF have not been shown to migrate from the lung and/or gut and do not become located in other organs of the body.

b - Acute Toxicity

c - Epidemiology

In order to determine possible human health effects following RCF exposure, the University of Cincinnati has been conducting medical surveillance studies on RCF workers in the U.S.A; this epidemiological study has been ongoing for 25 years and medical surveillance of RCF workers continues. The Institute of Occupational Medicine (IOM) has conducted medical surveillance studies on RCF workers in European manufacturing facilities.

Pulmonary morbidity studies among production workers in the U.S.A. and Europe have demonstrated an absence of interstitial fibrosis. In the European study a reduction of lung capacity among smokers has been identified, however, based on the latest results from a longitudinal study of workers in the U.S.A. with over 17-year follow-up, there has been no accelerated rate of loss of lung function (McKay et al. 2011).

A statistically significant correlation between pleural plaques and cumulative RCF exposure was evidenced in the U.S.A. longitudinal study.

The U.S.A. mortality study showed no excess mortality related to all deaths, all cancer, or malignancies or diseases of the respiratory system including mesothelioma (LeMasters et al. 2003).

d - Toxicology

A number of toxicological studies designed to identify any potential health effects from RCF exposure have been completed. In one study, conducted by the Research and Consulting Company, (Geneva, Switzerland), rats and hamsters were exposed to 30 mg/m³ (about 200 fibers/cc) of specially-prepared RCF for 6 hours/day, 5 days/week, for up to 24 months. In rats, a statistically significant increase in lung tumors was observed; two mesotheliomas (cancer of the pleural lining between the chest wall and lung) were also identified. Hamsters did not develop lung tumors; however, interstitial fibrosis and mesothelioma was found. Some, in the scientific community, have concluded that the "maximum tolerated dose" was exceeded and that significant particle contamination was a confounding issue; therefore, these study findings may not represent an accurate assessment of the potential for RCF to produce adverse health effects.

In a related multi-dose study with a similar protocol, other rats were exposed to doses of 16 mg/m³, 9 mg/m³, 3 mg/m³ which corresponds to about 115, 75, and 25 fibers per cubic centimeter respectively. This study found no statistically significant increase in lung cancer. Some cases of pleural and parenchymal fibrosis were seen in the 16 mg/m³ dose group. Some cases of mild fibrosis and one mesothelioma were observed in the 9 mg/m³ group. No acute respiratory effects were seen in the rats in the 3 mg/m³ exposure group, which suggests that there may be a dose/response threshold, below which irreversible respiratory impacts do not occur.

Other toxicological studies have been conducted which utilized non-physiological exposure methods such as intrapleural, intraperitoneal and intratracheal implantation or injection. Some of these studies have found that RCF is a potential carcinogen. Some experts, however, suggest that these tests have limited relevance because they bypass many of the biological mechanisms that prevent fiber deposition or facilitate fiber clearance.

Silica, amorphous

Toxic effects described in animals from single inhalation exposures of amorphous silica include upper respiratory irritation, lung congestion, bronchitis, and emphysema. Repeated inhalation exposures at concentration of 50 or 150 mg/m3 produced increased lung weights and lung changes. No progressive pulmonary fibrosis was seen and the observed lung changes were reversible. No adverse effects were observed in this study at 10 mg/m 3. No animal test reports are available to define the carcinogenic, mutagenic, or reproductive effects

Silicon Carbide

An animal study showed that, although exposure to silicon carbide alone produced no fibrosis of the lungs, exposure of guinea pigs infected with pulmonary tuberculosis to the extent that extensive fibrosis occurred. Guinea pigs exposed to silicon carbide dust and infected with the tubercle bacteria developed tuberculopneumoconiotic lesions. Miller and Sayers observed that silicon carbide dust administered by intraperitoneal injection to guinea pigs produced no reaction. A study in tungsten carbide industry workers concluded that exposure to silicon carbide was not a hazard unless the exposed workers already had pulmonary tuberculosis.

To obtain more epidemiology or toxicology information, please call the toll free telephone number for the Morgan Thermal Ceramics Product Stewardship Program found in Section 16 - Other Information.

International Agency for Research on Cancer and National Toxicology Program

IARC, in 1988, Monograph v.43 (and later reaffirmed in 2002, v.81), classified RCF as possibly carcinogenic to humans (group 2B). IARC evaluated the possible health effects of RCF as follows:

There is inadequate evidence in humans for the carcinogenicity of RCF. There is sufficient evidence in experimental animals for the carcinogenicity of RCF. The Annual Report on Carcinogens (latest edition), prepared by NTP, classified respirable RCF as "reasonably anticipated" to be a carcinogen). Not classified by OSHA.

12 - Ecological information

These products are not reported to have any ecotoxicity effects.

c - Bioaccumulative potential

No bioaccumulative potential.

d - Mobility in soil

No mobility in soil.

e - Other adverse effects (such as hazardous to the ozone layer

No adverse effects of this material on the environment are anticipated.

13 - Disposal Considerations

Waste Management and Disposal

To prevent waste materials from becoming airborne during waste storage, transportation and disposal, a covered container or plastic bagging is recommended.

Additional information

14 - Transport information

a - UN number.

Hazard Class: Not Regulated United Nations (UN) Number: Not Applicable Labels: Not Applicable North America (NA) Number: Not Applicable Placards: Not Applicable Bill of Lading: Product Name

b - UN proper shipping name

Not applicable.

c - Transport hazard class(es)

Not applicable.

d - Packing group, if applicable

Not applicable

e - Environmental hazards (e.g., Marine pollutant (Yes/No))

f - Transport in bulk (according to Annex II of MARPOL 73/78 and the IBC Code)

Not regulated.

g - Special precautions which a user needs to be aware of, or needs to comply with, in connection with transport or conveyance either within or outside their premises

Not applicable.

International

INTERNATIONAL

Canadian TDG Hazard Class & PIN: Not regulated

Not classified as dangerous goods under ADR (road), RID (train), IATA (air) or IMDG (ship).

15 - Regulatory information

15.1 - United States Regulations

UNITED STATES REGULATIONS

EPA: Superfund Amendments and Reauthorization Act (SARA)Title III - This product does not contain any substances reportable under Sections 302, 304, 313, (40 CFR 372). Sections 311 and 312 (40 CFR 370) apply (delayed hazard).

Toxic Substances Control Act (TSCA)- RCF has been assigned a CAS number; however, it is not required to be listed on the TSCA inventory.

Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Clean Air Act (CAA) - RCF contains fibers with an average diameter greater than one micron and thus is not considered a hazardous air pollutant.

OSHA: Comply with Hazard Communication Standards 29 CFR 1910.1200 and 29 CFR 1926.59

and the Respiratory Protection Standards 29 CFR 1910.134 and 29 CFR 1926.103.

California: Ceramic fibers (airborne particles of respirable size) is listed in Proposition 65, The Safe Drinking Water and Toxic Enforcement Act of 1986 as a chemical known to the State of California to

cause cancer.

Other States: RCF products are not known to be regulated by states other than California; however, state and local OSHA and EPA regulations may apply to these products. If in doubt, contact your localregulatory agency.

15.2 - International Regulations

INTERNATIONAL REGULATIONS

Canada:

Canadian Workplace Hazardous Materials Information System (WHMIS) - RCF is classified as Class D2A - Materials Causing Other Toxic Effects

Canadian Environmental Protection Act (CEPA)- All substances in this product are listed, as required, on the Domestic Substances List (DSL)

European Directive 97/69/EC classified RCF as a Category 2 carcinogen; that is it "should be regarded as if it is carcinogenic to man.

REACH Regulation:

RCF is classified under the CLP (classification, labelling and packaging of substances and mixtures) regulation as a category 1B carcinogen. On January 13, 2010 the European Chemicals Agency (ECHA) updated the candidate list for authorization (Annex XV of the REACH regulation) and added 14 new substances in this list including aluminosilicate refractory ceramic fibers.

As a consequence, EU (European Union) or EEA (European Economic Area) suppliers of articles which contain aluminosilicate refractory ceramic fibers in a concentration above 0.1% (w/w) have to provide sufficient information, available to them, to their customers or upon requests to a consumer within 45 days of the receipt of the request. This information must ensure safe use of the article, and as minimum contains the name of the substance.

16 - Other Information

initial statement

Devitrification

As produced, all RCF fibers are vitreous (glassy) materials which do not contain crystalline silica. Continued exposure to elevated temperatures over time may cause these fibers to devitrify (become crystalline). The first crystalline formation (mullite) begins to occur at approximately 985° C (1805° F). Crystalline phase silica may begin to form at approximately 1100° C (2012° F). When the glass RCF fibers devitrify, they form a mixed mineral crystalline silica containing dust. The crystalline silica is trapped in grain boundaries within a matrix predominately consisting of mullite. The occurrence and extent of crystalline phase formation is dependent on the duration and temperature of exposure, fiber chemistry and/or the presence of fluxing agents or furnace contaminants. The presence of crystalline phases can be confirmed only through laboratory analysis of the "hot face" fiber.

IARC's evaluation of crystalline silica states "Crystalline silica inhaled in the form of quartz or cristobalite from occupational sources is carcinogenic to humans (Group 1)" and additionally notes "carcinogenicity in humans was not detected in all industrial circumstances studied." IARC also studied mixed mineral crystalline silica containing dusts such as coal dusts (containing 5–15 % crystalline silica) and diatomaceous earth without seeing any evidence of disease. (IARC Monograph Vol. 68, 1997). NTP lists all polymorphs of crystalline silica as substances which may "reasonably be anticipated to be carcinogens".

IARC and NTP did not evaluate after-service RCF, which may contain various crystalline phases. However, an analysis of after-service RCF samples obtained pursuant to an exposure monitoring agreement with the EPA, found that in the furnace conditions sampled, most did not contain detectable levels of crystalline silica. Other relevant RCF studies found that (1) simulated after-service RCF showed little, or no, activity where exposure was by inhalation or by intraperitoneal injection; and (2) after-service RCF was not cytotoxic to macrophage-like cells at concentrations up to 320 micrograms/cm² - by comparison, pure quartz or cristobalite were significantly active at much lower levels (circa 20 micrograms/cm²).

Product Stewardship Program

Respiratory protection should be provided in compliance with the Product Stewardship Program and OSHA standards. During removal operations, a FULL FACE RESPIRATOR is recommended to reduce inhalation exposure along with eye and respiratory tract irritation. A specific evaluation of workplace hazards and the identification of appropriate respiratory protection is best performed, on a case-by-case basis, by a qualified industrial hygiene professional.

PRODUCT STEWARDSHIP PROGRAM:

Morgan Thermal Ceramics has established a program to provide customers with up-to-date information regarding the proper use and handling of RCF. In addition, Thermal Ceramics has established a program to monitor airborne fiber concentrations at customer facilities. If you would like more information about this program, please call your local supplier or visit one of the following web sites.

Morgan Thermal Ceramics - Global www.morganthermalceramics.com High Temperature Insulation Wools (HTIW) Coalition (USA) <u>www.htiwcoalition.org</u> ECFIA (Europe) www.ecfia.eu

HMIS HAZARD RATING

HMIS Health 1* (* denotes potential for chronic effects)

HMIS Flammable 0
HMIS Reactivity 0

HMIS Personal Protective Equipment X (To be determined by user)

TECHNICAL DATA SHEETS

Revision Summary

Revision date updated.

MSDS prepared by

SDS Prepared By: MORGAN THERMAL CERAMICS ENVIRONMENTAL, HEALTH & SAFETY DEPARTMENT

Disclaime

The information presented herein is presented in good faith and believed to be accurate as of the effective date of this Safety Data Sheet. Employers may use this SDS to supplement other information gathered by them in their efforts to assure the health and safety of their employees and the proper use of the product. This summary of the relevant data reflects professional judgment; employers should note that information perceived to be less relevant has not been included in this SDS. Therefore, given the summary nature of this document, Morgan Thermal Ceramics does not extend any warranty (expressed or implied), assume any responsibility, or make any representation regarding the completeness of this information or its suitability for the purposes envisioned by the user.